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Abstract. We have calculated the residual entropy of two-dimensional ice on a ruby lattice 
by the method of series expansion. Based on the first five terms of the series, we have 
found that the residual entropy is S = Nk In W where N is the number of molecules and 
W = 1.560rt0.001. 

1. Introduction 

At temperatures near absolute zero, ice has a residual entropy due to an indeterminacy 
in the positions of the hydrogen atoms (Pauling 1935). The residual entropy of ice 
can be calculated by using the so-called ice rules (Bernal and Fowler 1933, Slater 
1941): (1) there is exactly one hydrogen atom on each bond; (2) there are exactly 
two hydrogen atoms near to (and away from) each oxygen atom (located at the vertex 
of the lattice). 

The ice rules imply that the residual entropy is given by (Lieb and Wu 1972) 

S = N k  In W (1) 
where N is the number of vertices, k is the Boltzmann constant, and W” (for large 
N )  is the number of ways to arrange the arrows such that there are precisely two 
arrows pointing towards and two arrows pointing away from each vertex. 

Nagle (1966) developed a series expansion method to calculate the residual entropy 
of ice on any lattice of coordination number four. His results, which are based on 
the first five terms of the series, are 

W(rea1 ice) = 1.506 85 10 .000  15 (2) 

W(square lattice) = 1.54010.001. (3) 
His result for real ice agrees with experiment. Lieb (1967) calculated W on a square 
lattice exactly by the method of transfer matrix. The exact result is 

(4) 
in excellent agreement with Nagle‘s calculation. 

Lin and Tang (1976) have calculated the residual entropy of ice on a KagomC 
lattice by the method of series expansion, using a series suggested by Wu. Based on 
the first six terms of Wu’s series, they found 

W(square l a t t i ~ e ) = ( 4 / 3 ) ~ ” =  1.5396. . . 

W(KagomC lattice)=1.606 1 5 ~ 0 . 0 0 0  01. ( 5 )  
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The exact result for this lattice is still an unsolved problem. It can be shown (Lin and 
Wang 1977) that 

(6) 

The purpose of this paper is to calculate the residual entropy of ice (ice model) 

1.708. . . > W(KagomC lattice)>;(33)'l3 = 1.604. . . , 

on a ruby lattice by the method of series expansion. 

2. Ice model on a ruby lattice 

It has been pointed out by Wu (Lin and Tang 1976) that the ice model on a KagomC 
lattice is equivalent to a counting problem involving closed polygon configurations on 
the associated honeycomb lattice. Similarly, it can be shown that the ice model on a 
ruby lattice (figure 1) is equivalent to a counting problem on the associated snowflake 

Figure 1. A ruby lattice (full line) and the associated snowflake lattice (broken line). 

lattice (also called dice lattice). Consider a ruby lattice with 6 N  vertices; the number 
of ice configurations is 

where I and v are respectively the number of disconnected polygons and vertices in 
a given polygon configuration, and the summation is taken over all closed polygon 
configurations that can be drawn on the associated snowflake lattice. To see this, 
notice that there exists a 23N+'-" to 1 mapping between ice configurations on the ruby 
lattice (with periodic boundary conditions) and the closed polygon configurations on 
the associated snowflake lattice according to the following rule. Consider a polygon, 
which is either a triangle or a hexagon (figure 2), on the ruby lattice; a vertex is 
connected to the centre of the polygon by a broken line if the arrows around this 
polygon are arranged in such a way that one arrow points away from and one arrow 
points towards this vertex. Otherwise a vertex is connected to the centre of the 
polygon by a full line. The full lines drawn on bonds of the associated snowflake 
lattice form closed polygons. 
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Figure 2. The mapping between ice configurations on a ruby lattice and closed polygon 
configurations on the associated snowflake lattice. 

We can rewrite equation (7)  i n  the form 

where n is the number of quadrilaterals (rhombs) surrounded by the closed polygons 
on each configuration, and each term is a partial sum of the series in equation (7) 
over all configurations with the same order n. In the limit of infinite N, we have 
(Domb 1960) 

The calculation of fn(N) is straightforward. For example, we have f l (N) = 3N 
because we can draw exactly 3N quadrilaterals on the snowflake lattice with periodic 
boundary conditions and 1 - t' = 1 - 4 = -3 for each quadrilateral. We have evaluated 
f n  up t o n  = 5 :  

f l =  3N f 2  = 12N + 3N(3N - 5 ) / 2  f 3  = N(9N2 + 27N + 50)/2 

f4  = N(27N3+ 162N2+681N +546)/8 (10) 

fs = N(81N4+810N3+5715N2+ 12210N+ 17544)/40. 

To calculacfg,f2(N), we consider a pair of rhombs. There are 6N ways to draw a 
pair of rhombs which share a common edge and I - ZI = 1 - 6 = - 5 .  The contribution 
of these twin rhombs to f2(N) is thus twice 6N. We are left with (3r) -6N =3N(3N-5)/2 

pairs of rhombs where 1 - v = -6 for each pair. Therefore, the total contribution is 

12N + 3N(3N - 5 ) / 2 .  

For i > 2,  the calculation of f, ( N )  is more complicated but the procedure is basically 
the same. 

We define 

where 
W ( 1 )  = 1.4913 W ( 2 ) =  1.5158 W(3)  = 1.5293 

W(4)  = 1.5363 W ( 5 )  = 1.5405. 
(12)  
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In figure 3, we have plotted W ( n )  against l / n  and obtained a fairly smooth curve. 
By extrapolating this curve, we get 

W = W ( a ) =  1 .560~0 .001 .  (13) 

1 /n  

Figure 3. The value of W ( n )  against l / n .  

3. Discussion 

The most natural grouping of terms is the one introduced by Stillinger and Cotter 
(1973). This grouping inherently adds another physical parameter to the model, 
namely the Bjerrum defect energy, which is assumed to be infinite in this paper. 
However, their analysis depends on the assumption that every closed polygon in the 
ice crystals has an even number of sides. As a result the sites may be partitioned into 
two sublattices, with members of one sublattice serving as nearest neighbours to 
members of the other sublattice. These crystals are called loose-packed. Real ice 
crystal and some lattices (e.g. square and simple cubic lattices) are loose-packed. It 
has been shown by Nagle (1968) that the property of factorisation used by Stillinger 
and Cotter is valid only for loose-packed lattices. Since the ruby lattice is not 
loose-packed, their method cannot be applied to our model. 
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